Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(11), 2021
DOI: 10.1038/s41398-021-01464-x
Full text: Download
AbstractMelatonin is an ancient molecule that is evident in high concentrations in various tissues throughout the body. It can be separated into two pools; one of which is synthesized by the pineal and can be found in blood, and the second by various tissues and is present in these tissues. Pineal melatonin levels display a circadian rhythm while tissue melatonin does not. For decades now, melatonin has been implicated in promoting and maintaining sleep. More recently, evidence indicates that it also plays an important role in neuroprotection. The beginning of our review will summarize this literature. As an amphiphilic, pleiotropic indoleamine, melatonin has both direct actions and receptor-mediated effects. For example, melatonin has established effects as an antioxidant and free radical scavenger both in vitro and in animal models. This is also evident in melatonin’s prominent role in mitochondria, which is reviewed in the next section. Melatonin is synthesized in, taken up by, and concentrated in mitochondria, the powerhouse of the cell. Mitochondria are also the major source of reactive oxygen species as a byproduct of mitochondrial oxidative metabolism. The final section of our review summarizes melatonin’s potential role in aging and psychiatric disorders. Pineal and tissue melatonin levels both decline with age. Pineal melatonin declines in individuals suffering from psychiatric disorders. Melatonin’s ability to act as a neuroprotectant opens new avenues of exploration for the molecule as it may be a potential treatment for cases with neurodegenerative disease.