Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Animals, 4(11), p. 975, 2021

DOI: 10.3390/ani11040975

Links

Tools

Export citation

Search in Google Scholar

Egg Quality Parameters, Production Performance and Immunity of Laying Hens Supplemented with Plant Extracts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study examined the effects of Mentha arvensis (MA) and Geranium thunbergii (GT) extracts in drinking water on the production performance, egg quality, cholesterol content of egg yolk, proximate composition, and sensory qualities of egg and immunity parameters in laying hens. Ninety-six 28-week-old Hy-Line Brown layers were randomly divided into four dietary treatments for 16 weeks. The dietary treatments were (1) control, (2) T1 (0.01% 1 MA:1 GT), (3) T2 (0.05% 1 MA:1 GT), and (4) T3 (0.1% 1 MA:1 GT). Egg production increased significantly with increasing levels of MA and GT. The egg weight was increased in T2, and the feed intake was highest in T2 and T3 (p < 0.05). The Haugh unit and egg shape index were significantly better in T3 and the control than with other treatments (p < 0.05). The content of yolk cholesterol was significantly lower (p < 0.05) in T2 and T3. On the other hand, there were no significant differences in the egg proximate composition. A significant increase in the serum interleukin 6 (IL-6), tumor necrosis factor (TNFα) and immunoglobulins (IgG and IgA) concentration was observed in the birds fed plant extracts when compared to the control. On average, T2 and T3 showed significantly lower (p < 0.05) concentrations of NH3 gas from the feces as compared to the control. This study suggests that MA and GT supplementation could improve the laying performance, egg quality, and immunity, and decrease the egg yolk cholesterol content in a dose-dependent manner.