Published in

Life Metabolism, 2022

DOI: 10.1093/lifemeta/loac021



Export citation

Search in Google Scholar

Reduced phosphatidylcholine synthesis suppresses the embryonic lethality of seipin deficiency

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Abstract Seipin plays a vital role in lipid droplet homeostasis and its deficiency causes congenital generalized lipodystrophy type II in humans. It is not known whether the physiological defects are all caused by cellular lipid droplet defects. Loss-of-function mutation of seip-1, the C. elegans seipin ortholog, causes embryonic lethality and lipid droplet abnormality. We uncover nhr-114 and spin-4 as two suppressors of seip-1 embryonic lethality. Mechanistically, nhr-114 and spin-4 act in the “B12-one-carbon cycle-phosphatidylcholine (PC)” axis and reducing PC synthesis suppresses the embryonic lethality of seip-1 mutants. Conversely, PC deficiency enhances the lipid droplet abnormality of seip-1 mutants. The suppression of seip-1 embryonic lethality by PC reduction requires polyunsaturated fatty acid (PUFA). In addition, the suppression is enhanced by knockdown of phospholipid scramblase epg-3. Therefore, seipin and phosphatidylcholine exhibit opposite actions in embryogenesis, while they function similarly in lipid droplet homeostasis. Our results demonstrate that seipin-mediated embryogenesis is independent of lipid droplet homeostasis.