Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 14(30), p. 24407, 2022

DOI: 10.1364/oe.458674

Links

Tools

Export citation

Search in Google Scholar

Size-dependent optical forces on dielectric microspheres in hollow core photonic crystal fibers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Optical forces on microspheres inside hollow core photonic crystal fibers (HC-PCFs) are often predicted using a ray optics model, which constrains its validity based on wavelength and microsphere sizes. Here, we introduce a rigorous treatment of the electromagnetic forces based on the Lorenz-Mie theory, which involves analytical determination of beam shape coefficients for the optical modes of a HC-PCF. The method is more practicable than numerical approaches and, in contrast with ray optics models, it is not limited by system size parameters. Time of flight measurements of microspheres flying through the HC-PCF lead to results consistent with the Lorenz-Mie predictions.