Published in

American Association of Neurological Surgeons, Neurosurgical Focus, 4(52), p. E7, 2022

DOI: 10.3171/2022.1.focus21561

Links

Tools

Export citation

Search in Google Scholar

Differentiation of lumbar disc herniation and lumbar spinal stenosis using natural language processing–based machine learning based on positive symptoms

Journal article published in 2022 by GuanRui Ren, Kun Yu, ZhiYang Xie, Lei Liu, PeiYang Wang, Wei Zhang, YunTao Wang, XiaoTao Wu
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE The purpose of this study was to develop natural language processing (NLP)–based machine learning algorithms to automatically differentiate lumbar disc herniation (LDH) and lumbar spinal stenosis (LSS) based on positive symptoms in free-text admission notes. The secondary purpose was to compare the performance of the deep learning algorithm with the ensemble model on the current task. METHODS In total, 1921 patients whose principal diagnosis was LDH or LSS between June 2013 and June 2020 at Zhongda Hospital, affiliated with Southeast University, were retrospectively analyzed. The data set was randomly divided into a training set and testing set at a 7:3 ratio. Long Short-Term Memory (LSTM) and extreme gradient boosting (XGBoost) models were developed in this study. NLP algorithms were assessed on the testing set by the following metrics: receiver operating characteristic (ROC) curve, area under the curve (AUC), accuracy score, recall score, F1 score, and precision score. RESULTS In the testing set, the LSTM model achieved an AUC of 0.8487, accuracy score of 0.7818, recall score of 0.9045, F1 score of 0.8108, and precision score of 0.7347. In comparison, the XGBoost model achieved an AUC of 0.7565, accuracy score of 0.6961, recall score of 0.7387, F1 score of 0.7153, and precision score of 0.6934. CONCLUSIONS NLP-based machine learning algorithms were a promising auxiliary to the electronic health record in spine disease diagnosis. LSTM, the deep learning model, showed better capacity compared with the widely used ensemble model, XGBoost, in differentiation of LDH and LSS using positive symptoms. This study presents a proof of concept for the application of NLP in prediagnosis of spine disease.