Published in

Oxford University Press, The Plant Cell, 7(34), p. 2730-2746, 2022

DOI: 10.1093/plcell/koac110

Links

Tools

Export citation

Search in Google Scholar

Splicing-mediated activation of SHAGGY-like kinases underpinning carbon partitioning in Arabidopsis seeds

Journal article published in 2022 by Chengxiang Li ORCID, Bin Chen ORCID, Hao Yu ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Glycogen synthase kinase 3 (GSK3) family members serve as signaling hubs for plant development and stress responses, yet the underlying mechanism of their transcriptional regulation remains a long-standing mystery. Here we show that the transcription of SHAGGY-like kinase 11/12 (SK11/12), two members of the GSK3 gene family, is promoted by the splicing factor SmD1b, which is essential for distributing carbon sources into storage and protective components in Arabidopsis seeds. The chromatin recruitment of SmD1b at the SK11/12 loci promotes their transcription associated with co-transcriptional splicing of the first introns in the 5′-untranslated region of SK11/12. The loss of SmD1b function generates transcripts with unspliced introns that create disruptive R-loops to hamper the transcriptional elongation of SK11/12, in addition to compromising the recruitment of RNA polymerase II to the SK11/12 genomic regions. These effects imposed by SmD1b determine the transcription of SK11/12 to confer a key switch of carbon flow among metabolic pathways in zygotic and maternal tissues in seeds.