Published in

Cerebral Cortex Communications, 1(3), 2022

DOI: 10.1093/texcom/tgab067

Links

Tools

Export citation

Search in Google Scholar

Classification of EEG Signals Reveals a Focal Aftereffect of 10 Hz Motor Cortex Transcranial Alternating Current Stimulation

Journal article published in 2022 by Elinor Tzvi ORCID, Jalal Alizadeh, Christine Schubert, Joseph Classen
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Transcranial alternating current stimulation (tACS) modulates oscillations in a frequency- and location-specific manner and affects cognitive and motor functions. This effect appears during stimulation as well as “offline,” following stimulation, presumably reflecting neuroplasticity. Whether tACS produces long-lasting aftereffects that are physiologically meaningful, is still of current debate. Thus, for tACS to serve as a reliable method for modulating activity within neural networks, it is important to first establish whether “offline” aftereffects are robust and reliable. In this study, we employed a novel machine-learning approach to detect signatures of neuroplasticity following 10-Hz tACS to two critical nodes of the motor network: left motor cortex (lMC) and right cerebellum (rCB). To this end, we trained a classifier to distinguish between signals following lMC-tACS, rCB-tACS, and sham. Our results demonstrate better classification of electroencephalography (EEG) signals in both theta (θ, 4–8 Hz) and alpha (α, 8–13 Hz) frequency bands to lMC-tACS compared with rCB-tACS/sham, at lMC-tACS stimulation location. Source reconstruction allocated these effects to premotor cortex. Stronger correlation between classification accuracies in θ and α in lMC-tACS suggested an association between θ and α efffects. Together these results suggest that EEG signals over premotor cortex contains unique signatures of neuroplasticity following 10-Hz motor cortex tACS.