Published in

MDPI, Applied Sciences, 8(12), p. 3912, 2022

DOI: 10.3390/app12083912

Links

Tools

Export citation

Search in Google Scholar

4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(1) Background: Aorta hemodynamics have been associated with aortic remodeling, but the reproducibility of its assessment has been evaluated marginally in patients with thoracic aortic aneurysm (TAA). The current study evaluated intra- and interobserver reproducibility of 4D flow MRI-derived hemodynamic parameters (normalized flow displacement, flow jet angle, wall shear stress (WSS) magnitude, axial WSS, circumferential WSS, WSS angle, vorticity, helicity, and local normalized helicity (LNH)) in TAA patients; (2) Methods: The thoracic aorta of 20 patients was semi-automatically segmented on 4D flow MRI data in 5 systolic phases by 3 different observers. Each time-dependent segmentation was manually improved and partitioned into six anatomical segments. The hemodynamic parameters were quantified per phase and segment. The coefficient of variation (COV) and intraclass correlation coefficient (ICC) were calculated; (3) Results: A total of 2400 lumen segments were analyzed. The mean aneurysm diameter was 50.8 ± 2.7 mm. The intra- and interobserver analysis demonstrated a good reproducibility (COV = 16–30% and ICC = 0.84–0.94) for normalized flow displacement and jet angle, a very good-to-excellent reproducibility (COV = 3–26% and ICC = 0.87–1.00) for all WSS components, helicity and LNH, and an excellent reproducibility (COV = 3–10% and ICC = 0.96–1.00) for vorticity; (4) Conclusion: 4D flow MRI-derived hemodynamic parameters are reproducible within the thoracic aorta in TAA patients.