Published in

American Association of Neurological Surgeons, Journal of Neurosurgery, 4(136), p. 942-950, 2022

DOI: 10.3171/2021.1.jns202825

Links

Tools

Export citation

Search in Google Scholar

Dural arteriovenous fistulas without cortical venous drainage: presentation, treatment, and outcomes

Journal article published in 2022 by Edgar A. Samaniego, Jorge A. Roa, Minako Hayakawa, Ching-Jen Chen, Jason P. Sheehan, Louis J. Kim, Isaac Josh Abecassis, Michael R. Levitt, Ridhima Guniganti, Akash P. Kansagra, Giuseppe Lanzino, Enrico Giordan, Waleed Brinjikji, Diederik Bulters, Andrew Durnford and other authors.
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE Current evidence suggests that intracranial dural arteriovenous fistulas (dAVFs) without cortical venous drainage (CVD) have a benign clinical course. However, no large study has evaluated the safety and efficacy of current treatments and their impact over the natural history of dAVFs without CVD. METHODS The authors conducted an analysis of the retrospectively collected multicenter Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) database. Patient demographics and presenting symptoms, angiographic features of the dAVFs, and treatment outcomes of patients with Borden type I dAVFs were reviewed. Clinical and radiological follow-up information was assessed to determine rates of new intracranial hemorrhage (ICH) or nonhemorrhagic neurological deficit (NHND), worsening of venous hyperdynamic symptoms (VHSs), angiographic recurrence, and progression or spontaneous regression of dAVFs over time. RESULTS A total of 342 patients/Borden type I dAVFs were identified. The mean patient age was 58.1 ± 15.6 years, and 62% were women. The mean follow-up time was 37.7 ± 54.3 months. Of 230 (67.3%) treated dAVFs, 178 (77%) underwent mainly endovascular embolization, 11 (4.7%) radiosurgery alone, and 4 (1.7%) open surgery as the primary modality. After the first embolization, most dAVFs (47.2%) achieved only partial reduction in early venous filling. Multiple complementary interventions increased complete obliteration rates from 37.9% after first embolization to 46.7% after two or more embolizations, and 55.2% after combined radiosurgery and open surgery. Immediate postprocedural complications occurred in 35 dAVFs (15.2%) and 6 (2.6%) with permanent sequelae. Of 127 completely obliterated dAVFs by any therapeutic modality, 2 (1.6%) showed angiographic recurrence/recanalization at a mean of 34.2 months after treatment. Progression to Borden-Shucart type II or III was documented in 2.2% of patients and subsequent development of a new dAVF in 1.6%. Partial spontaneous regression was found in 22 (21.4%) of 103 nontreated dAVFs. Multivariate Cox regression analysis demonstrated that older age, NHND, or severe venous-hyperdynamic symptoms at presentation and infratentorial location were associated with worse prognosis. Kaplan-Meier curves showed no significant difference for stable/improved symptoms survival probability in treated versus nontreated dAVFs. However, estimated survival times showed better trends for treated dAVFs compared with nontreated dAVFs (288.1 months vs 151.1 months, log-rank p = 0.28). This difference was statistically significant for treated dAVFs with 100% occlusion (394 months, log-rank p < 0.001). CONCLUSIONS Current therapeutic modalities for management of dAVFs without CVD may provide better symptom control when complete angiographic occlusion is achieved.