Published in

Nature Research, Scientific Data, 1(8), 2021

DOI: 10.1038/s41597-021-00871-5

Links

Tools

Export citation

Search in Google Scholar

Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThis paper describes benthic coral reef community composition point-based field data sets derived from georeferenced photoquadrats using machine learning. Annually over a 17 year period (2002–2018), data were collected using downward-looking photoquadrats that capture an approximately 1 m2 footprint along 100 m–1500 m transect surveys distributed along the reef slope and across the reef flat of Heron Reef (28 km2), Southern Great Barrier Reef, Australia. Benthic community composition for the photoquadrats was automatically interpreted through deep learning, following initial manual calibration of the algorithm. The resulting data sets support understanding of coral reef biology, ecology, mapping and dynamics. Similar methods to derive the benthic data have been published for seagrass habitats, however here we have adapted the methods for application to coral reef habitats, with the integration of automatic photoquadrat analysis. The approach presented is globally applicable for various submerged and benthic community ecological applications, and provides the basis for further studies at this site, regional to global comparative studies, and for the design of similar monitoring programs elsewhere.