Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 5(21), p. 1592, 2021

DOI: 10.3390/s21051592

Links

Tools

Export citation

Search in Google Scholar

Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Red palm weevil (RPW) is a detrimental pest, which has wiped out many palm tree farms worldwide. Early detection of RPW is challenging, especially in large-scale farms. Here, we introduce the combination of machine learning and fiber optic distributed acoustic sensing (DAS) techniques as a solution for the early detection of RPW in vast farms. Within the laboratory environment, we reconstructed the conditions of a farm that includes an infested tree with ∼12 day old weevil larvae and another healthy tree. Meanwhile, some noise sources are introduced, including wind and bird sounds around the trees. After training with the experimental time- and frequency-domain data provided by the fiber optic DAS system, a fully-connected artificial neural network (ANN) and a convolutional neural network (CNN) can efficiently recognize the healthy and infested trees with high classification accuracy values (99.9% by ANN with temporal data and 99.7% by CNN with spectral data, in reasonable noise conditions). This work paves the way for deploying the high efficiency and cost-effective fiber optic DAS to monitor RPW in open-air and large-scale farms containing thousands of trees.