Published in

American Heart Association, Circulation: Genomic and Precision Medicine, 5(14), 2021

DOI: 10.1161/circgen.121.003312

Links

Tools

Export citation

Search in Google Scholar

Utility of Genetically Predicted Lp(a) (Lipoprotein [a]) and ApoB Levels for Cardiovascular Risk Assessment

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Current lipid guidelines suggest measurement of Lp(a) (lipoprotein[a]) and ApoB (apolipoprotein B) for atherosclerotic cardiovascular disease risk assessment. Polygenic risk scores (PRSs) for Lp(a) and ApoB may identify individuals unlikely to have elevated Lp(a) or ApoB and thus reduce such suggested testing. Methods: PRSs were developed using least absolute shrinkage and selection operator regression among 273 222 and 356 958 UK Biobank participants of white British ancestry for Lp(a) and ApoB, respectively, and validated in separate sets of 60 771 UK Biobank and 15 050 European Prospective Investigation into Cancer and Nutrition-Norfolk participants. We then assessed the proportion of participants who, based on these PRSs, were unlikely to benefit from Lp(a) or ApoB measurements, according to current lipid guidelines. Results: In the UK Biobank and European Prospective Investigation into Cancer and Nutrition-Norfolk cohorts, the area under the receiver operating curve for the PRS-predicted Lp(a) and ApoB to identify individuals with elevated Lp(a) and ApoB was at least 0.91 (95% CI, 0.90–0.92) and 0.74 (95% CI, 0.73–0.75), respectively. The Lp(a) PRS and measured Lp(a) showed comparable association with atherosclerotic cardiovascular disease incidence, whereas the ApoB PRS was in general less predictive of atherosclerotic cardiovascular disease risk than measured ApoB. In the context of the European Society of Cardiology/European Atherosclerosis Society lipid guidelines, at a 95% sensitivity to identify individuals with elevated Lp(a) and ApoB levels, at least 54% of Lp(a) and 24% of ApoB testing could be reduced by prescreening with a PRS while maintaining a low false-negative rate. Conclusions: A substantial proportion of suggested testing for elevated Lp(a) and a modest proportion of testing for elevated ApoB could potentially be reduced by prescreening individuals with PRSs.