Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 3(155), 2021

DOI: 10.1063/5.0054859

Links

Tools

Export citation

Search in Google Scholar

The impact of water vapor on the OH reactivity toward CH3CHO at ultra-low temperatures (21.7–135.0 K): Experiments and theory

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The role of water vapor (H2O) and its hydrogen-bonded complexes in the gas-phase reactivity of organic compounds with hydroxyl (OH) radicals has been the subject of many recent studies. Contradictory effects have been reported at temperatures between 200 and 400 K. For the OH + acetaldehyde reaction, a slight catalytic effect of H2O was previously reported at temperatures between 60 and 118 K. In this work, we used Laval nozzle expansions to reinvestigate the impact of H2O on the OH-reactivity with acetaldehyde between 21.7 and 135.0 K. The results of this comprehensive study demonstrate that water, instead, slows down the reaction by factors of ∼3 (21.7 K) and ∼2 (36.2–89.5 K), and almost no effect of added H2O was observed at 135.0 K.