Published in

American Association for Cancer Research, Clinical Cancer Research, 24(27), p. 6737-6748, 2021

DOI: 10.1158/1078-0432.ccr-21-1165

Links

Tools

Export citation

Search in Google Scholar

Comprehensive Molecular Analysis of Inflammatory Myofibroblastic Tumors Reveals Diverse Genomic Landscape and Potential Predictive Markers for Response to Crizotinib

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: The European Organization for Research and Treatment of Cancer (EORTC) clinical phase II trial 90101 “CREATE” showed high antitumor activity of crizotinib, an inhibitor of anaplastic lymphoma kinase (ALK)/ROS1, in patients with advanced inflammatory myofibroblastic tumor (IMFT). However, recent findings suggested that other molecular targets in addition to ALK/ROS1 might also contribute to the sensitivity of this kinase inhibitor. We therefore performed an in-depth molecular characterization of archival IMFT tissue, collected from patients enrolled in this trial, with the aim to identify other molecular alterations that could play a role in the response to crizotinib. Experimental Design: Twenty-four archival IMFT samples were used for histopathological assessment and DNA/RNA evaluation to identify gene fusions, copy-number alterations (CNA), and mutations in the tumor tissue. Results were correlated with clinical parameters to assess a potential association between molecular findings and clinical outcomes. Results: We found 12 ALK fusions with 11 different partners in ALK-positive IMFT cases by Archer analysis whereas we did not identify any ROS1-rearranged tumor. One ALK-negative patient responding to crizotinib was found to have an ETV6–NTRK fusion in the tumor specimen. The CNA profile and mutational landscape of IMFT revealed extensive molecular heterogeneity. Loss of chromosome 19 (25% of cases) and PIK3CA mutations (9% of cases) were associated with shorter progression-free survival in patients receiving crizotinib. Conclusions: We identified multiple genetic alterations in archival IMFT material and provide further insight into the molecular profile of this ultra-rare, heterogeneous malignancy, which may potentially translate into novel treatment approaches for this orphan disease.