Published in

Public Library of Science, PLoS ONE, 3(16), p. e0248122, 2021

DOI: 10.1371/journal.pone.0248122

Links

Tools

Export citation

Search in Google Scholar

Amyloid burden quantification depends on PET and MR image processing methodology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantification of amyloid load with positron emission tomography can be useful to assess Alzheimer’s Disease in-vivo. However, quantification can be affected by the image processing methodology applied. This study’s goal was to address how amyloid quantification is influenced by different semi-automatic image processing pipelines. Images were analysed in their Native Space and Standard Space; non-rigid spatial transformation methods based on maximum a posteriori approaches and tissue probability maps (TPM) for regularisation were explored. Furthermore, grey matter tissue segmentations were defined before and after spatial normalisation, and also using a population-based template. Five quantification metrics were analysed: two intensity-based, two volumetric-based, and one multi-parametric feature. Intensity-related metrics were not substantially affected by spatial normalisation and did not significantly depend on the grey matter segmentation method, with an impact similar to that expected from test-retest studies (≤10%). Yet, volumetric and multi-parametric features were sensitive to the image processing methodology, with an overall variability up to 45%. Therefore, the analysis should be carried out in Native Space avoiding non-rigid spatial transformations. For analyses in Standard Space, spatial normalisation regularised by TPM is preferred. Volumetric-based measurements should be done in Native Space, while intensity-based metrics are more robust against differences in image processing pipelines.