Dissemin is shutting down on January 1st, 2025

Published in

Colégio Brasileiro de Radiologia, Radiologia Brasileira, 2(54), p. 87-93, 2021

DOI: 10.1590/0100-3984.2019.0135

Links

Tools

Export citation

Search in Google Scholar

Radiomic analysis of lung cancer for the assessment of patient prognosis and intratumor heterogeneity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract Objective: To determine whether the radiomic features of lung lesions on computed tomography correlate with overall survival in lung cancer patients. Materials and Methods: This was a retrospective study involving 101 consecutive patients with malignant neoplasms confirmed by biopsy or surgery. On computed tomography images, the lesions were submitted to semi-automated segmentation and were characterized on the basis of 2,465 radiomic variables. The prognostic assessment was based on Kaplan-Meier analysis and log-rank tests, according to the median value of the radiomic variables. Results: Of the 101 patients evaluated, 28 died (16 dying from lung cancer), and 73 were censored, with a mean overall survival time of 1,819.4 days (95% confidence interval [95% CI]: 1,481.2-2,157.5). One radiomic feature (the mean of the Fourier transform) presented a difference on Kaplan-Meier curves (p < 0.05). A high-risk group of patients was identified on the basis of high values for the mean of the Fourier transform. In that group, the mean survival time was 1,465.4 days (95% CI: 985.2-1,945.6), with a hazard ratio of 2.12 (95% CI: 1.01-4.48). We also identified a low-risk group, in which the mean of the Fourier transform was low (mean survival time of 2,164.8 days; 95% CI: 1,745.4-2,584.1). Conclusion: A radiomic signature based on the Fourier transform correlates with overall survival, representing a prognostic biomarker for risk stratification in patients with lung cancer.