Published in

Association for Computing Machinery, ACM Computing Surveys, 8(54), p. 1-35, 2022

DOI: 10.1145/3467477



Export citation

Search in Google Scholar

Evolutionary Machine Learning: A Survey

Journal article published in 2022 by Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, Amir H. Gandomi
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Evolutionary Computation (EC) approaches are inspired by nature and solve optimization problems in a stochastic manner. They can offer a reliable and effective approach to address complex problems in real-world applications. EC algorithms have recently been used to improve the performance of Machine Learning (ML) models and the quality of their results. Evolutionary approaches can be used in all three parts of ML: preprocessing (e.g., feature selection and resampling), learning (e.g., parameter setting, membership functions, and neural network topology), and postprocessing (e.g., rule optimization, decision tree/support vectors pruning, and ensemble learning). This article investigates the role of EC algorithms in solving different ML challenges. We do not provide a comprehensive review of evolutionary ML approaches here; instead, we discuss how EC algorithms can contribute to ML by addressing conventional challenges of the artificial intelligence and ML communities. We look at the contributions of EC to ML in nine sub-fields: feature selection, resampling, classifiers, neural networks, reinforcement learning, clustering, association rule mining, and ensemble methods. For each category, we discuss evolutionary machine learning in terms of three aspects: problem formulation, search mechanisms, and fitness value computation. We also consider open issues and challenges that should be addressed in future work.