Published in

In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science, 2022

DOI: 10.1130/2021.2553(06)

Links

Tools

Export citation

Search in Google Scholar

Linear magnetic anomalies and the limits of oceanic crust in oceans

Book chapter published in 2022 by Laurent Geoffroy, Laurent Gernigon, Gillian R. Foulger
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The true partitioning between continental and oceanic lithosphere in oceans is unclear. According to early models, oceanic-type accretion generates pairs of linear magnetic anomalies, which are indicators of oceanic lithosphere and can be used as isochrons formed by seafloor spreading. However, seaward-dipping reflectors at conjugate volcanic passive margins also generate linear magnetic anomalies. The thick wedges of the inner seaward-dipping reflectors are associated with magnetic anomalies that are clearly distinct in shape and amplitude from those recorded in the distal oceanic realm. However, linear magnetic anomalies indistinguishable from those related to oceanic crust exist in the outer seaward-dipping reflector domain of many volcanic passive margins. Located seaward of the inner seaward-dipping reflectors, the crust of outer seaward-dipping reflectors is thus generally considered to be “oceanic.” However, the outer seaward-dipping reflector crust may be interpreted as tectonically exhumed mid-to-lower magma-intruded continental crust covered with syntectonic basalts. Although both oceanic crust and outer seaward-dipping reflector crust are associated with thick lava sections, the linear magnetic anomalies of outer seaward-dipping reflectors represent pre-oceanization magnetic anomalies that develop along extended continental lithosphere. We illustrate the consequence of these uncertainties on the type of lithosphere between Greenland and Europe. Here, depending on latitude, 20%–100% of the lithosphere previously thought to be oceanic might, on the contrary, be continental. Since more than 50% of passive margins worldwide are volcanic, poor mapping of seaward-dipping reflector–bearing crust types, and misinterpretation of linear magnetic anomaly–bearing distal volcanic passive-margin crust, could have led to widespread overestimation of the age of con tinental breakup and the extent of oceanic lithosphere in oceans.