Published in

Quintessence Publishing, MICRO, 1(1), p. 151-163, 2021

DOI: 10.3390/micro1010012

Links

Tools

Export citation

Search in Google Scholar

Antifouling Studies of Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiol Self-Assembled Monolayers

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The antifouling properties of self-assembled monolayers (SAMs) on gold generated from custom-designed bidentate unsymmetrical spiroalkanedithiols containing both oligo(ethylene glycol) and hydrocarbon tailgroups (EG3C7-C7 and EG3C7-C18) were evaluated and compared to SAMs derived from analogous monodentate octadecanethiol (C18SH) and the tri(ethylene glycol)-terminated alkanethiol EG3C7SH. Complementary techniques, including in situ surface plasmon resonance spectroscopy (SPR), ex situ electrochemical quartz crystal microbalance (QCM) measurements, and ex situ ellipsometric thickness measurements, were employed to assess the protein resistance of the SAMs using proteins having a wide range of sizes, structures, and properties: protamine, lysozyme, bovine serum albumin (BSA), and fibrinogen. The studies found that SAMs generated from the bidentate adsorbates EG3C7-C7 and EG3C7-C18, which contain a 1:1 mixture of OEG and hydrocarbon tailgroups, exhibited a diminished capacity to resist protein adsorption compared to the EG3C7SH SAMs, which possess only OEG tailgroups. The data highlight the critical role of hydration of the OEG matrix for generating antifouling OEG-based surface coatings.