Published in

Nicotine & Tobacco Research, 2021

DOI: 10.1093/ntr/ntab141

Links

Tools

Export citation

Search in Google Scholar

Exposure to nicotine vapor produced by an electronic nicotine delivery system causes short-term increases in impulsive choice in adult male rats

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Introduction Traditional cigarette use influences cost-benefit decision making by promoting impulsive choice. However, the impact of exposure via electronic nicotine delivery systems on impulsive choice remains unclear. Hence, the present study examined the short- and long-term effects of nicotine vapor on impulsive choice. Methods Twenty-four adult male rats were trained in the delay discounting task, to choose between small, immediate food rewards or large, delayed food rewards. After 24 days of training in the task, rats were exposed to vapor containing either 0, 12, or 24 mg/mL of nicotine, for ten days. To validate inhalation of nicotine vapor, serum cotinine levels were analyzed on exposure days 1, 5, and 10 using enzyme-linked immunosorbent assay (ELISA). Following vapor exposure, rats were retrained in the discounting task until rats displayed stable responding, and the effects of nicotine vapor on choice preference were assessed. Results Rats exposed to 12 and 24 mg/mL nicotine vapor displayed higher serum cotinine levels than control rats exposed to 0 mg/mL vapor. There were no differences in impulsive choice between any vapor exposure groups when tested 15 days after exposure, across 6 days of stable responding, suggesting that nicotine vapor does not have long lasting effects on impulsive choice. Interestingly, a subsequent nicotine vapor challenge revealed short-term increases in impulsive choice immediately following a single exposure to 24 mg/mL nicotine vapor, relative to choice preference immediately following exposure to 0 mg/mL vapor. Conclusions These results suggest that exposure to nicotine vapor causes immediate, short-term increases in impulsive choice. Implications E-cigarette use is increasing at an alarming rate, particularly among adolescents and young adults. This is concerning given the lack of research into the effects of nicotine vapor exposure on the brain and behavior. The present study describes a viable rodent model of human e-cigarette use and suggest that exposure to nicotine vapor produces short-term increases in impulsive choice.