Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, npj Quantum Materials, 1(6), 2021

DOI: 10.1038/s41535-021-00350-5

Links

Tools

Export citation

Search in Google Scholar

Probing the interplay between lattice dynamics and short-range magnetic correlations in CuGeO3 with femtosecond RIXS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractInvestigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K-edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.