Published in

BioMed Central, BMC Medicine, 1(19), 2021

DOI: 10.1186/s12916-021-01972-z

Links

Tools

Export citation

Search in Google Scholar

Shared genetic etiology and causality between body fat percentage and cardiovascular diseases: a large-scale genome-wide cross-trait analysis

Journal article published in 2021 by Zhenhuang Zhuang, Minhao Yao, Jason Y. Y. Wong, Zhonghua Liu ORCID, Tao Huang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Accumulating evidences have suggested that high body fat percentage (BF%) often occurs in parallel with cardiovascular diseases (CVDs), implying a common etiology between them. However, the shared genetic etiology underlying BF% and CVDs remains unclear. Methods Using large-scale genome-wide association study (GWAS) data, we investigated shared genetics between BF% (N = 100,716) and 10 CVD-related traits (n = 6968-977,323) with linkage disequilibrium score regression, multi-trait analysis of GWAS, and transcriptome-wide association analysis, and evaluated causal associations using Mendelian randomization. Results We found strong positive genetic correlations between BF% and heart failure (HF) (Rg = 0.47, P = 1.27 × 10− 22) and coronary artery disease (CAD) (Rg = 0.22, P = 3.26 × 10− 07). We identified 5 loci and 32 gene-tissue pairs shared between BF% and HF, as well as 16 loci and 28 gene-tissue pairs shared between BF% and CAD. The loci were enriched in blood vessels and brain tissues, while the gene-tissue pairs were enriched in the nervous, cardiovascular, and exo-/endocrine system. In addition, we observed that BF% was causally related with a higher risk of HF (odds ratio 1.63 per 1-SD increase in BF%, P = 4.16 × 10–04) using a MR approach. Conclusions Our findings suggest that BF% and CVDs have shared genetic etiology and targeted reduction of BF% may improve cardiovascular outcomes. This work advances our understanding of the genetic basis underlying co-morbid obesity and CVDs and opens up a new way for early prevention of CVDs.