Published in

The Plant Cell, 2021

DOI: 10.1093/plcell/koab060



Export citation

Search in Google Scholar

The PIF1-miR408-PLANTACYANIN Repression Cascade Regulates Light-Dependent Seed Germination

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Abstract Light-dependent seed germination is a vital process for many seed plants. A decisive event in light-induced germination is degradation of the central repressor PHYTOCHROME INTERACTING FACTOR 1 (PIF1). The balance between gibberellic acid (GA) and abscisic acid (ABA) helps to control germination. However, the cellular mechanisms linking PIF1 turnover to hormonal balancing remain elusive. Here, employing far-red light-induced Arabidopsis thaliana seed germination as the experimental system, we identified PLANTACYANIN (PCY) as an inhibitor of germination. It is a blue copper protein associated with the vacuole that is both highly expressed in mature seeds and rapidly silenced during germination. Molecular analyses showed that PIF1 binds to the miR408 promoter and represses miR408 accumulation. This in turn posttranscriptionally modulates PCY abundance, forming the PIF1-miR408-PCY repression cascade for translating PIF1 turnover to PCY turnover during early germination. Genetic analysis, RNA-sequencing, and hormone quantification revealed that PCY is necessary and sufficient to maintain the PIF1-mediated seed transcriptome and the low-GA-high-ABA state. Furthermore, we found that PCY domain organization and regulation by miR408 are conserved features in seed plants. These results revealed a cellular mechanism whereby PIF1-relayed external light signals are converted through PCY turnover to internal hormonal profiles for controlling seed germination.