Published in

Oxford University Press, The American Journal of Clinical Nutrition, 2021

DOI: 10.1093/ajcn/nqaa373



Export citation

Search in Google Scholar

Positive effects of folic acid supplementation on cognitive aging are dependent on ω-3 fatty acid status: a post hoc analysis of the FACIT trial

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


ABSTRACT Background Although epidemiological studies suggest a protective role of B vitamins and omega-3 (ω-3) fatty acids in cognitive decline, findings from intervention studies are conflicting. Mechanistic studies suggest that the ω-3 (n–3) fatty acid status can modulate the effects of B vitamins on cognitive decline. Objectives We investigated the interaction between baseline ω-3 fatty acid statuses and folic acid treatment on cognitive decline in a placebo-controlled trial [FACIT (Folic Acid and Carotid Intima-media Thickness)]. Methods This post hoc analysis included 791 older adults aged 50–70 y with plasma total homocysteine ≥13 µmol/L and ≤26 µmol/L and serum vitamin B12 ≥200 pmol/L. Participants received 800 µg folic acid or placebo daily for 3 y. Global cognitive functioning and domain-specific functioning (episodic memory, information processing speed, executive functioning) were assessed at baseline and after 3 y. The effect of the folic acid supplementation was analyzed according to tertiles of baseline ω-3 fatty acid concentrations using linear multiple regression. Results The mean ± SD age of the study population was 60.2 ± 5.6 y, and the mean ± SD Mini-Mental State Examination score was 28.6 ± 1.5. The treatment effect of folic acid was significantly larger in participants in the low compared to high ω-3 fatty acid tertile for global cognition (difference in z-score: mean ± SE = 0.16 ± 0.059; P < 0.01). Regarding domain-specific functioning, similar results were observed for information processing speed (mean ± SE = 0.167 ± 0.068; P = 0.01). There were no overall interactions between folic acid treatment and ω-3 fatty acid tertiles for episodic memory (P = 0.14) and executive functioning (P = 0.21). Conclusions This post hoc analysis revealed that the efficacy of folic acid treatment on cognitive functioning is dependent on the ω-3 fatty acid status. Individuals with a lower ω-3 fatty acid status at baseline benefited from folic acid treatment, while individuals with a higher ω-3 fatty acid status did not. The results potentially explain the inconsistency in outcomes of B-vitamin supplementation trials and emphasize the importance of a personalized approach. This trial was registered at as NCT00110604.