Published in

SAGE Publications, International Journal of Stroke, p. 174749302199196, 2021

DOI: 10.1177/1747493021991961



Export citation

Search in Google Scholar

Striped occipital cortex and intragyral hemorrhage: Novel magnetic resonance imaging markers for cerebral amyloid angiopathy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Background and aim To investigate whether a striped occipital cortex and intragyral hemorrhage, two markers recently detected on ultra-high-field 7-tesla-magnetic resonance imaging in hereditary cerebral amyloid angiopathy (CAA), also occur in sporadic CAA (sCAA) or non-sCAA intracerebral hemorrhage (ICH). Methods We performed 7-tesla-magnetic resonance imaging in patients with probable sCAA and patients with non-sCAA-ICH. Striped occipital cortex (linear hypointense stripes perpendicular to the cortex) and intragyral hemorrhage (hemorrhage restricted to the juxtacortical white matter of one gyrus) were scored on T2*-weighted magnetic resonance imaging. We assessed the association between the markers, other CAA-magnetic resonance imaging markers and clinical features. Results We included 33 patients with sCAA (median age 70 years) and 29 patients with non-sCAA-ICH (median age 58 years). Striped occipital cortex was detected in one (3%) patient with severe sCAA. Five intragyral hemorrhages were found in four (12%) sCAA patients. The markers were absent in the non-sCAA-ICH group. Patients with intragyral hemorrhages had more lobar ICHs (median count 6.5 vs. 1.0), lobar microbleeds (median count >50 vs. 15), and lower median cognitive scores (Mini Mental State Exam: 20 vs. 28, Montreal Cognitive Assessment: 18 vs. 24) compared with patients with sCAA without intragyral hemorrhage. In 12 (36%) patients, sCAA diagnosis was changed to mixed-type small vessel disease due to deep bleeds previously unobserved on lower field-magnetic resonance imaging. Conclusion Whereas a striped occipital cortex is rare in sCAA, 12% of patients with sCAA have intragyral hemorrhages. Intragyral hemorrhages seem to be related to advanced disease and their absence in patients with non-sCAA-ICH could suggest specificity for CAA.