Published in

MDPI, International Journal of Molecular Sciences, 3(22), p. 1470, 2021

DOI: 10.3390/ijms22031470

Links

Tools

Export citation

Search in Google Scholar

GEM-Based Metabolic Profiling for Human Bone Osteosarcoma under Different Glucose and Glutamine Availability

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cancer cell metabolism is dependent on cell-intrinsic factors, such as genetics, and cell-extrinsic factors, such nutrient availability. In this context, understanding how these two aspects interact and how diet influences cellular metabolism is important for developing personalized treatment. In order to achieve this goal, genome-scale metabolic models (GEMs) are used; however, genetics and nutrient availability are rarely considered together. Here, we propose integrated metabolic profiling, a framework that allows enriching GEMs with metabolic gene expression data and information about nutrients. First, the RNA-seq is converted into Reaction Activity Score (RAS) to further scale reaction bounds. Second, nutrient availability is converted to Maximal Uptake Rate (MUR) to modify exchange reactions in a GEM. We applied our framework to the human osteosarcoma cell line (U2OS). Osteosarcoma is a common and primary malignant form of bone cancer with poor prognosis, and, as indicated in our study, a glutamine-dependent type of cancer.