Published in

MDPI, Nutrients, 2(13), p. 461, 2021

DOI: 10.3390/nu13020461

Links

Tools

Export citation

Search in Google Scholar

Eicosapentaenoic Acid Is Associated with Decreased Incidence of Alzheimer’s Dementia in the Oldest Old

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) may have different effects on cognitive health due to their anti- or pro-inflammatory properties. Methods. We aimed to prospectively examine the relationships between n-3 and n-6 PUFA contents in serum phospholipids with incident all-cause dementia and Alzheimer’s disease dementia (AD). We included 1264 non-demented participants aged 84 ± 3 years from the German Study on Ageing, Cognition, and Dementia in Primary Care Patients (AgeCoDe) multicenter-cohort study. We investigated whether fatty acid concentrations in serum phospholipids, especially eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), alpha-linolenic acid (ALA), linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA), were associated with risk of incident all-cause dementia and AD. Results. During the follow-up window of seven years, 233 participants developed dementia. Higher concentrations of EPA were associated with a lower incidence of AD (hazard ratio (HR) 0.76 (95% CI 0.63; 0.93)). We also observed that higher concentrations of EPA were associated with a decreased risk for all-cause dementia (HR 0.76 (95% CI 0.61; 0.94)) and AD (HR 0.66 (95% CI 0.51; 0.85)) among apolipoprotein E ε4 (APOE ε4) non-carriers but not among APOE ε4 carriers. No other fatty acids were significantly associated with AD or dementia. Conclusions. Higher concentrations of EPA were associated with a lower risk of incident AD. This further supports a beneficial role of n-3 PUFAs for cognitive health in old age.