Published in

Annual Reviews, Annual Review of Food Science and Technology, 1(12), p. 331-354, 2021

DOI: 10.1146/annurev-food-032818-121443

Links

Tools

Export citation

Search in Google Scholar

Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification

Journal article published in 2021 by Shang Lin, Jane Wittrup Agger, Casper Wilkens ORCID, Anne S. Meyer
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4- O-methyl-d-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.