Published in

MDPI, Applied Sciences, 2(11), p. 710, 2021

DOI: 10.3390/app11020710

Links

Tools

Export citation

Search in Google Scholar

Targeted Gene Sequencing, Bone Health, and Body Composition in Cornelia de Lange Syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to evaluate bone health and body composition by dual-energy X-ray absorptiometry (DXA) in individuals with Cornelia de Lange Syndrome (CdLS). Overall, nine individuals with CdLS (five females, all Caucasian, aged 5–38 years) were assessed. Total body less head (TBLH) and lumbar spine (LS) scans were performed, and bone serum biomarkers were determined. Molecular analyses were carried out and clinical scores and skeletal features were assessed. Based on deep sequencing of a custom target gene panel, it was discovered that eight of the nine CdLS patients had potentially causative genetic variants in NIPBL. Fat and lean mass indices (FMI and LMI) were 3.4–11.1 and 8.4–17.0 kg/m2, respectively. For TBLH areal bone mineral density (aBMD), after adjusting for height for age Z-score of children and adolescents, two individuals (an adolescent and an adult) had low BMD (aBMD Z-scores less than –2.0 SD). Calcium, phosphorus, 25-OH-vitamin D, parathyroid hormone, and alkaline phosphatase levels were 2.08–2.49 nmol/L, 2.10–3.75 nmol/L, 39.94–78.37 nmol/L, 23.4–80.3 pg/mL, and 43–203 IU/L, respectively. Individuals with CdLS might have normal adiposity and low levels of lean mass measured with DXA. Bone health in this population seems to be less of a concern during childhood and adolescence. However, they might be at risk for impaired bone health due to low aBMD in adulthood.