Published in

JMIR Publications, JMIR mHealth and uHealth, 12(8), p. e21643, 2020

DOI: 10.2196/21643

Links

Tools

Export citation

Search in Google Scholar

Augmented Reality for Smoking Cessation: Development and Usability Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background The recent widespread availability of augmented reality via smartphone offers an opportunity to translate cue exposure therapy for smoking cessation from the laboratory to the real world. Despite significant reductions in the smoking rates in the last decade, approximately 13.7% of the adults in the United States continue to smoke. Smoking-related cue exposure has demonstrated promise as an adjuvant therapy in the laboratory, but practical limitations have prevented its success in the real world. Augmented reality technology presents an innovative approach to overcome these limitations. Objective The aim of this study was to develop a smartphone app that presents smoking-related augmented reality images for cue exposure. Smokers provided feedback on the images and reported on the perceived urge to smoke, qualities of reality/coexistence, and general feedback about quality and functioning. The feedback was used to refine the augmented reality images within the app. Methods In collaboration with an augmented reality design company, we developed 6 smoking-related images (cigarette, lighter, ashtray, lit cigarette in ashtray, etc) and 6 neutral images similar in size or complexity for comparison (pen, eraser, notebook, soda bottle with droplets, etc). Ten smokers completed a survey of demographic characteristics, smoking history and behavior, dependence on nicotine, motivation to quit smoking, and familiarity with augmented reality technology. Then, participants viewed each augmented reality image and provided ratings on 10-point Likert scales for urge to smoke and reality/coexistence of the image into the scene. Participants were also queried with open-ended questions regarding the features of the images. Results Of the 10 participants, 5 (50%) had experienced augmented reality prior to the laboratory visit, but only 4 of those 5 participants used augmented reality at least weekly. Although the sample was small (N=10), smokers reported significantly higher urge to smoke after viewing the smoking-related augmented reality images (median 4.58, SD 3.49) versus the neutral images (median 1.42, SD 3.01) (Z=–2.14, P=.03; d=0.70). The average reality and coexistence ratings of the images did not differ between smoking-related and neutral images (all P>.29). Augmented reality images were found on average to be realistic (mean [SD] score 6.49 [3.11]) and have good environmental coexistence (mean [SD] score 6.93 [3.04]) and user coexistence (mean [SD] score 6.38 [3.27]) on the 10-point scale. Participant interviews revealed some areas of excellence (eg, details of the lit cigarette) and areas for improvement (eg, stability of images, lighting). Conclusions All images were generally perceived as being realistic and well-integrated into the environment. However, the smoking augmented reality images produced higher urge to smoke than the neutral augmented reality images. In total, our findings support the potential utility of augmented reality for cue exposure therapy. Future directions and next steps are discussed.