Published in

Elsevier, Handbook of Numerical Analysis, p. 453-483

DOI: 10.1016/s1570-8659(03)10006-3

Links

Tools

Export citation

Search in Google Scholar

Computational approaches of relativistic models in quantum chemistry

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This chapter is a review of some methods used for the computation of relativistic atomic and molecular models based on the Dirac equation. In the linear case, we briefly describe finite basis set approaches, including ones that are generated numerically, perturbation theory and effective Hamiltonians procedures, direct variational methods based on nonlinear transformations, min-max formulations and constrained minimizations. In the atomic case, we describe the MCDF method and some ways to solve numerically the homogeneous and inhomogeneous Dirac-Fock equations. Finally, we describe also some numerical methods relevant to the case of molecules.