Published in

Oxford University Press, The Journal of Nutrition, 2020

DOI: 10.1093/jn/nxaa322

Links

Tools

Export citation

Search in Google Scholar

Protein for a Healthy Future: How to Increase Protein Intake in an Environmentally Sustainable Way in Older Adults in the Netherlands

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Background Protein intake greater than the currently recommended amount is suggested to improve physical functioning and well-being in older adults, yet it is likely to increase diet-associated greenhouse gas emissions (GHGEs) if environmental sustainability is not considered. Objectives We aimed to identify dietary changes needed to increase protein intake while improving diet environmental sustainability in older adults. Methods Starting from the habitual diet of 1,354 Dutch older adults (aged 56–101 y) from the Longitudinal Aging Study Amsterdam cohort, mathematical diet optimization was used to model high-protein diets with minimized departure from habitual intake in cumulative steps. First, a high-protein diet defined as that providing ≥1.2 g protein · kg body weight−1 · d−1 was developed isocalorically while maintaining or improving nutritional adequacy of the diet. Second, adherence to the Dutch food-based dietary guidelines (FBDG) was imposed. Third, a stepwise 10% GHGE reduction was applied. Results Achieving a high-protein diet aligned with the FBDG without considering GHGEs required an increase in vegetables, legumes, nuts, whole grains, meat/dairy alternatives, dairy, and eggs and a reduction in total meat (for men only) and discretionary products, but it resulted in a 5% increase in GHGEs in men and 9% increase in women. When a stepwise GHGE reduction was additionally applied, increases in poultry and pork (mainly for women) and decreases in beef/lamb and processed meat were accrued, with total meat staying constant until a 50–60% GHGE reduction. Increases in whole grains, nuts, and meat/dairy alternatives and decreases in discretionary products were needed to lower GHGEs. Conclusions A high-protein diet aligned with FBDG can be achieved in concert with reductions in GHGEs in Dutch older adults by consuming no more than the recommended 500 g meat per week while replacing beef and lamb and processed meat with poultry and pork and increasing intake of diverse plant-protein sources.