Research, Society and Development, 11(9), p. e4839119899, 2020
A caracterização de mudança climáticas de uma região admite determinar ações de planejamento para atividades agrícolas futuras. Sendo assim, objetivou-se modelar a precipitação pluviométrica do ano de 2017 para o Agreste Meridional de Pernambuco, Brasil, a partir de distribuições probabilísticas. Foram analisadas a qualidade do ajuste e aderência de distintas funções de probabilidade (Cos-Weibull, Weibull-Exponential, Kumaraswamy Weibull e Kumaraswamy Weibull Poisson e Gumbel). Para verificar os ajustes, foram determinados os critérios os estatísticos da AIC, BIC e HQIC, além dos testes de Anderson Darling (AD) e Cramér-von Misses (CVM). A área de estudo é formada por 71 municípios distribuídos em seis microrregiões do Agreste Pernambucano e está inserida na área de cobertura denominada "áreas sujeitas a secas", que apresenta período de estiagem inferior ao sertão. Para a elaboração deste trabalho, foram utilizados dados médios anuais de precipitação de 2017 das 71 estações meteorológicas (municípios), adquiridos da Agência de Água e Clima de Pernambucana (APAC) e da Agência Nacional de Água (ANA). As cinco funções de probabilidade resultaram em adequados e bons ajustes, exceto Kumaraswamy Weibull Poisson e Gumbel. Entretanto, os resultados obtidos indicaram que a distribuição Cos-Weibull com dois parâmetros foi mais adequadamente ajustada às condições pluviométricas das seis microrregiões do Agreste Pernambucano, seguidas pelas distribuições Weibull-Exponential, Kumweibul e Kumwpoisson. Para os dados em questão, a função de probabilidade que apresentou resultado mais acurado às condições pluviométricas das seis microrregiões do Agreste Pernambucano, foi a de Cos-Weibull com dois parâmetros, seguidas pelas distribuições Weibull-Exponential, Kumweibul, e por último a Kumaraswamy Weibull Poisson.