Published in

EDP Sciences, Astronomy & Astrophysics, (645), p. A44, 2021

DOI: 10.1051/0004-6361/202038248

Links

Tools

Export citation

Search in Google Scholar

Cosmology with gravitationally lensed repeating fast radio bursts

Journal article published in 2020 by O. Wucknitz ORCID, L. G. Spitler, U.-L. Pen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

High-precision cosmological probes have revealed a small but significant tension between the parameters measured with different techniques, among which there is one based on time delays in gravitational lenses. We discuss a new way of using time delays for cosmology, taking advantage of the extreme precision expected for lensed fast radio bursts, which are short flashes of radio emission originating at cosmological distances. With coherent methods, the achievable precision is sufficient for measuring how time delays change over the months and years, which can also be interpreted as differential redshifts between the images. It turns out that uncertainties arising from the unknown mass distribution of gravitational lenses can be eliminated by combining time delays with their time derivatives. Other effects, most importantly relative proper motions, can be measured accurately and disentangled from the cosmological effects. With a mock sample of simulated lenses, we show that it may be possible to attain strong constraints on cosmological parameters. Finally, the lensed images can be used as galactic interferometer to resolve structures and motions of the burst sources with incredibly high resolution and help reveal their physical nature, which is currently unknown.