Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 21(10), p. 7702, 2020

DOI: 10.3390/app10217702

Links

Tools

Export citation

Search in Google Scholar

Network Traffic Modeling in a Wi-Fi System with Intelligent Soil Moisture Sensors (WSN) Using IoT Applications for Potato Crops and ARIMA and SARIMA Time Series

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This article presents the results obtained by analyzing the data traffic that originated in a system with intelligent soil moisture sensors (Wireless Sensor Network—WSN) that transmit through a wireless network. This study sought to integrate smart agriculture and IoT (Internet of Things) applications in potato crops in various rural settings. Using these measurements, the data analysis was performed through the ARIMA (autoregressive integrated moving average model) and SARIMA (seasonal autoregressive integrated moving average model) time series following the Box–Jenkins methodology. GRETL (Gnu Regression, Econometrics and Time-series Library) free software was used to generate a teletraffic behavior prediction model in a larger-scale implementation. The main objective was the creation of a model that allows an analysis and simulation about the behavior of the main performance parameters that a medium-scale WSN system would have for the monitoring of a crop. Thanks to this analysis, it will be possible to determine the technical characteristics that a sensor deployment should have in a specific area and for a specific crop.