Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optica, 12(7), p. 1660, 2020

DOI: 10.1364/optica.405946

Links

Tools

Export citation

Search in Google Scholar

Taming the snake instabilities in a polariton superfluid

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dark solitons observed in a large variety of nonlinear media are unstable against the modulational (snake) instabilities and can break in vortex streets. This behavior has been investigated in nonlinear optical crystals and ultra-cold atomic gases. However, a deep characterization of this phenomenon is still missing. In a resonantly pumped two-dimensional polariton superfluid, we use an all-optical imprinting technique together with the bistability of the polariton system to create dark solitons in confined channels. Due to the snake instabilities, the solitons are unstable and break into arrays of vortex streets whose dynamical evolution is frozen by the pump-induced confining potential, allowing their direct observation in our system. A deep quantitative study shows that the vortex street period is proportional to the quantum fluid healing length, in agreement with the theoretical predictions. Finally, the full control achieved on the soliton patterns is exploited to give proof of principle of an efficient, ultra-fast, analog, all-optical maze solving machine in this photonic platform.