Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Communications Physics, 1(3), 2020

DOI: 10.1038/s42005-020-00441-y

Links

Tools

Export citation

Search in Google Scholar

Optical frequency metrology in the bending modes region

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOptical metrology and high-resolution spectroscopy, despite impressive progress across diverse regions of the electromagnetic spectrum from ultraviolet to terahertz frequencies, are still severely limited in the region of vibrational bending modes from 13 to 20 µm. This long-wavelength part of the mid-infrared range remains largely unexplored due to the lack of tunable single-mode lasers. Here, we demonstrate bending modes frequency metrology in this region by employing a continuous-wave nonlinear laser source with tunability from 12.1 to 14.8 µm, optical power up to 110 µW, MHz-level linewidth and comb calibration. We assess several CO2-based frequency benchmarks with uncertainties down to 30 kHz and we provide an extensive study of the v11 band of benzene, a significant testbed for the resolution of the spectrometer. These achievements pave the way for long-wavelength infrared metrology, rotationally-resolved studies and astronomic observations of large molecules such as aromatic hydrocarbons.