Published in

Oxford University Press (OUP), European Heart Journal - Cardiovascular Imaging, 2020

DOI: 10.1093/ehjci/jeaa241

Links

Tools

Export citation

Search in Google Scholar

Impact of three-dimensional global longitudinal strain for patients with acute myocardial infarction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims In patients with ST-segment elevation myocardial infarction (STEMI), predicting left ventricular (LV) remodelling (LVR) and prognosis is important. We explored the clinical usefulness of three-dimensional (3D) speckle-tracking echocardiography to predict LVR and prognosis in STEMI. Methods and results The study group comprised 255 first STEMI patients (65 years; 210 men) treated with primary percutaneous coronary intervention between April 2008 and May 2012 at Yokohama City University Medical Center. Baseline global longitudinal strain (GLS) was measured with two-dimensional (2D) and 3D speckle-tracking echocardiography. Within 48 of admission, standard 2D echocardiography and 3D full-volume imaging were performed, and 2D-GLS and 3D-GLS were calculated. Infarct size was estimated by 99mTc-sestamibi single-photon emission computed tomography. Echocardiography was performed at 1 year repeatedly in 239 patients. The primary endpoint was LVR, defined as an increase of 20% of LV end-diastolic volume index and major adverse cardiac and cerebrovascular events (MACE: cardiac death, non-fatal MI, heart failure, and ischaemic stroke) at 1 year, and the secondary endpoint was cardiac death and heart failure. Patients were followed for 1 year; 64, 25, and 16 patients experienced LVR, MACE, and the secondary endpoint, respectively. Multivariate analysis revealed that 3D-GLS was the strongest predictor of LVR (odds ratio = 1.437, 95% CI: 1.047–2.257, P = 0.02), MACE (odds ratio = 1.443, 95% CI: 1.240–1.743, P = 0.0002), and the secondary end point (odds ratio = 1.596, 95% CI: 1.17–1.56, P < 0.0001). Receiver-operating characteristic curve analysis showed that 3D-GLS was superior to 2D-GLS in predicting LVR and 1-year prognosis. Conclusion 3D-GLS obtained immediately after STEMI is independently associated with LVR and 1-year prognosis.