Published in

American Chemical Society, Journal of Physical Chemistry C, 18(114), p. 8337-8342, 2010

DOI: 10.1021/jp102086q

Links

Tools

Export citation

Search in Google Scholar

Hole Band Mixing in CdS and CdSe Quantum Dots and Quantum Rods

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using a six-band k · p Hamiltonian for wurtzite lattice, we study the hole ground state symmetry and composition in spherical quantum dots and elongated quantum rods made of CdS and CdSe. The ground state crossovers which occur when changing the nanocrystal size and shape are well understood in terms of hole band mixing. Contrary to previous belief, the quantum rod ground state crossover with increasing length is shown not to occur at a fixed aspect ratio. The geometry and composition that maximize the spin purity and the intensity of linearly polarized light emission are elucidated. The six-band wurtzite Hamiltonian results for CdSe are compared to those obtained with quasi-cubic four-band and one-band Hamiltonians, and the performance of these simplified Hamiltonians is discussed