Published in

Oxford University Press, Neuro-Oncology Advances, 1(2), 2020

DOI: 10.1093/noajnl/vdaa121

Links

Tools

Export citation

Search in Google Scholar

OptimalTTF-1: Enhancing tumor treating fields therapy with skull remodeling surgery. A clinical phase 1 trial in adult recurrent glioblastoma.

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Preclinical studies suggest that skull remodeling surgery (SR-surgery) increases the dose of tumor treating fields (TTFields) in glioblastoma (GBM) and prevents wasteful current shunting through the skin. SR-surgery introduces minor skull defects to focus the cancer-inhibiting currents toward the tumor and increase the treatment dose. This study aimed to test the safety and feasibility of this concept in a phase I setting. Methods Fifteen adult patients with the first recurrence of GBM were treated with personalized SR-surgery, TTFields, and physician’s choice oncological therapy. The primary endpoint was toxicity and secondary endpoints included standard efficacy outcomes. Results SR-surgery resulted in a mean skull defect area of 10.6 cm2 producing a median TTFields enhancement of 32% (range 25–59%). The median TTFields treatment duration was 6.8 months and the median compliance rate 90%. Patients received either bevacizumab, bevacizumab/irinotecan, or temozolomide rechallenge. We observed 71 adverse events (AEs) of grades 1 (52%), 2 (35%), and 3 (13%). There were no grade 4 or 5 AEs or intervention-related serious AEs. Six patients experienced minor TTFields-induced skin rash. The median progression-free survival (PFS) was 4.6 months and the PFS rate at 6 months was 36%. The median overall survival (OS) was 15.5 months and the OS rate at 12 months was 55%. Conclusions TTFields therapy combined with SR-surgery and medical oncological treatment is safe and nontoxic and holds the potential to improve the outcome for GBM patients through focal dose enhancement in the tumor.