Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-18331-w

Links

Tools

Export citation

Search in Google Scholar

Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPermafrost degradation may lead to mobilization of carbon and nutrients and enhance microbial processing rates of previously frozen organic matter. Although the pool size and chemical composition of dissolved organic matter (DOM) are fundamental determinants of the carbon cycle in Arctic watersheds, its source within the seasonally thawing active layer and the underlying permafrost remains largely uncharacterized. Here, we used 25 soil cores that extended down into the permafrost from nine sites across Arctic Canada to quantify dissolved organic carbon (DOC) and nitrogen stocks, and to characterize DOM optical properties. Organic permafrost stores 5–7 times more DOC and ammonium than the active layer and mineral permafrost. Furthermore, the permafrost layers contain substantial low molecular weight DOM with low aromaticity suggesting high biodegradability. We conclude that soil organic matter stoichiometry and cryogenic processes determine permafrost DOM chemistry, and that thawing will mobilize large amounts of labile DOC and ammonium into Arctic watersheds.