Published in

Oxford University Press, Translational Animal Science, 3(4), 2020

DOI: 10.1093/tas/txaa169

Links

Tools

Export citation

Search in Google Scholar

Extrusion of soybean hulls does not increase digestibility of amino acids or concentrations of digestible and metabolizable energy when fed to growing pigs

Journal article published in 2020 by Diego A. Rodriguez, Su A. Lee, María R. C. de Godoy, Hans H. Stein
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Two experiments were conducted to determine effects of extrusion on energy and nutrient digestibility in soybean hulls. One source of soybean hulls was ground and divided into two batches. One batch was used without further processing, whereas the other batch was extruded. In Exp. 1, four diets were formulated to determine crude protein (CP) and amino acid (AA) digestibility in soybean hulls. A soybean meal-based diet in which soybean meal provided all the CP and AA was formulated. Two diets were formulated to contain 30% nonextruded or extruded soybean hulls and 18% soybean meal. An N-free diet that was used to determine the endogenous losses of CP and AA was also used. Eight growing barrows (initial body weight = 37.0 ± 3.9 kg) had a T-cannula installed in the distal ileum and were allotted to a replicated 4 × 4 Latin square design. Each experimental period lasted 7 d with the initial 5 d being the adaptation period and ileal digesta were collected for 8 h on day 6 and 7. Results indicated that extrusion of soybean hulls did not change the standardized ileal digestibility (SID) of CP and most AA with the exception that the SID of Ile and Leu tended (P < 0.10) to be greater in extruded than nonextruded soybean hulls. In Exp. 2, three diets were formulated to determine energy digestibility in soybean hulls. One corn-soybean meal based basal diet, and two diets that contained corn, soybean meal, and 32% extruded or nonextruded soybean hulls were formulated. Twenty-four growing barrows (initial body weight = 59.9 ± 3.4 kg) were allotted to a randomized complete block design. Pigs were housed individually in metabolism crates and feces and urine were collected separately for 4 d after 5 d of adaptation. The apparent total tract digestibility (ATTD) of gross energy (GE) and the digestible energy (DE) and metabolizable energy (ME) were reduced (P < 0.05) in diets containing nonextruded or extruded soybean hulls compared with the basal diet. However, the ATTD of GE and values for DE and ME in soybean hulls were not improved by extrusion. Likewise, extrusion did not change the concentration of total dietary fiber in soybean hulls. In conclusion, there were no effects of extrusion of soybean hulls on SID of AA, energy digestibility, or ME concentration in soybean hulls.