Published in

Wiley Open Access, Journal of the American Heart Association, 18(9), 2020

DOI: 10.1161/jaha.120.017404

Links

Tools

Export citation

Search in Google Scholar

Purinergic Dysfunction in Pulmonary Arterial Hypertension

Journal article published in 2020 by Zongye Cai ORCID, Ly Tu, Christophe Guignabert, Daphne Merkus ORCID, Zhichao Zhou ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Pulmonary arterial hypertension (PAH) is a life‐threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide‐ and nucleoside‐activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine‐mediated purinergic 1 receptor activation, particularly A 2A R activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A 2B R activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP‐mediated P2X 7 R activation and ADP‐mediated activation of P2Y 1 R and P2Y 12 R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A 2B R signaling, counteracting hypoxia‐induced pulmonary injury, and that ATP release is impaired in erythrocyte in PAH implies erythrocyte dysfunction as an important trigger to affect purinergic signaling for pathogenesis of PAH. The present review focuses on current knowledge on alteration of nucleot(s)ide‐mediated purinergic signaling as a potential disease mechanism underlying the development of PAH.