Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Physics, 8(5), p. 592-597, 2009

DOI: 10.1038/nphys1329

Links

Tools

Export citation

Search in Google Scholar

Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Entanglement-based technologies, such as quantum information processing, quantum simulations, and quantum-enhanced metrology, have the potential to revolutionise our way of computing and measuring and help clarifying the puzzling concept of entanglement itself. Ultracold atoms on atom chips are attractive for their implementation, as they provide control over quantum systems in compact, robust, and scalable setups. An important tool in this system is a potential depending on the internal atomic state. Coherent dynamics in this potential combined with collisional interactions allows entanglement generation both for individual atoms and ensembles. Here, we demonstrate coherent manipulation of Bose-condensed atoms in such a potential, generated in a novel way with microwave near-fields on an atom chip. We reversibly entangle atomic internal and motional states, realizing a trapped-atom interferometer with internal-state labelling. Our system provides control over collisions in mesoscopic condensates, paving the way for on-chip generation of many-particle entanglement and quantum-enhanced metrology with spin-squeezed states. ; Comment: 9 pages, 6 figures