Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 34(17), p. 21810-21818

DOI: 10.1039/c5cp02068a

Links

Tools

Export citation

Search in Google Scholar

The role of a structure directing agent tetramethylammonium template in the initial steps of silicate oligomerization in aqueous solution

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To understand the formation of silicate oligomer in the initial stage is a key for zeolite synthesis. The use of different organic structure directing agents is known to be a key factor in the formation of different silicate species and the final zeolite structure. Tetramethylammonium (TMA+), for example, is indispensable for the formation of the LTA zeolite type. However, the role of a TMA+ template has not yet been elucidated at molecular level. In this study, ab-initio molecular dynamic simulations were combined with thermodynamic integration to arrive at an understanding of the role of TMA+ in the formation of various silicate species from dimer to 4-ring. Free energy profiles show that trimer and 3-ring silicate are less favourable than other oligomers such as linear tetramer, branched tetramer and 4-ring structures. TMA+ exhibits an important role in controlling the predominant species in solution via its close interaction with silicate structures during reaction process. This can explain that formation of D4R.8TMA crystals, as observed in experiment, is controlled by the single 4-ring formation step.