Published in

Elsevier, Journal of Catalysis, (297), p. 227-235

DOI: 10.1016/j.jcat.2012.10.010

Links

Tools

Export citation

Search in Google Scholar

Microkinetics of steam methane reforming on platinum and rhodium metal surfaces

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have investigated the most important elementary reaction steps in the steam methane reforming (SMR) process for planar and stepped Pt surfaces (dissociative CH4 adsorption, CHads-O-ads recombination, H2O activation) and compared activation barriers for Rh surfaces. Compared to Rh, the lower reactivity of Pt results in (i) higher barriers for dissociative CH4 adsorption and (ii) endothermic formation of OHads and O-ads. Microkinetic simulations show that Rh nanoparticle catalysts will be more active than Pt ones. The rate-controlling step is dissociative CH4 adsorption occurring on low-coordinated surface atoms (edges, corners, step-edges). The stepped surfaces are much more reactive than planar surfaces of the corresponding metals. For stepped Pt surfaces, CO formation via recombination of C-ads + OHads is favored because of the low O-ads coverage. At higher temperatures, deactivation may occur due to poisoning by carbonaceous species because the rate of OHads/O-ads formation becomes too low compared to the rate of CHads formation. This occurs at lower temperature for Pt than for Rh because of the lower Pt-O bond energy. (c) 2012 Elsevier Inc. All rights reserved.