Published in

Integrative Organismal Biology, 2020

DOI: 10.1093/iob/obaa022

Links

Tools

Export citation

Search in Google Scholar

Functional and environmental constraints on prey capture speed in a lizard

Journal article published in 2020 by David R. Adams, Matthew E. Gifford
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Movement is an important component of animal behavior and determines how an organism interacts with its environment. The speed at which an animal moves through its environment can be constrained by internal (e.g., physiological state) and external factors (e.g., habitat complexity). When foraging, animals should move at speeds that maximize prey capture while minimizing mistakes (i.e., missing prey, slipping). We used experimental arenas containing obstacles spaced in different arrays to test how variation in habitat complexity influenced attack distance, prey capture speed, and foraging success in the Prairie Lizard. Obstacles spaced uniformly across arenas resulted in 15% slower prey capture speed and 30%–38% shorter attack distance compared to arenas with no obstacles or with obstacles clustered in opposite corners of the arena. Prey capture probability was not influenced by arena type or capture speed, but declined with increasing attack distance. Similarly, the probability of prey consumption declined with attack distance across arena types. However, prey consumption probability declined with increasing prey capture speed in more open arenas but not in the cluttered arena. Foraging accuracy declined with increasing speed in more open arenas, and remained relatively constant when obstacles were in closer proximity. Foraging success was primarily constrained by intrinsic properties (speed-maneuverability tradeoff) when ample space was available, but environmental conditions had a greater impact on foraging success in “cluttered” habitats. This empirical test of theoretical predictions about optimal movement speeds in animals provides a step forward in understanding how animals select speeds in nature.