Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Polymers, 8(12), p. 1697, 2020

DOI: 10.3390/polym12081697

Links

Tools

Export citation

Search in Google Scholar

Flame-Retardant Polyamide Powder for Laser Sintering: Powder Characterization, Processing Behavior and Component Properties

Journal article published in 2020 by Kevin Schneider ORCID, Katrin Wudy ORCID, Dietmar Drummer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Up to now, laser-sintered components have been barely used by industries such as aerospace and transport industry due to high flammability. By the use of flame retardants, the flammability of laser-sintered parts should be reduced to extend their range of possible applications. This paper aims to investigate the influence of halogen-free phosphinate-based flame retardants on process-relevant characteristics and process behavior, as well as mechanical and physical properties. Most importantly, the flammability of the material should be reduced. Two different types of phosphinate-based fillers were used in a concentration between 10 and 25 wt % in combination with the matrix material polyamide 12 (PA12). Thermal, optical, and powder properties of the mixtures were analytically investigated. Furthermore, the mechanical characterization of the sintered specimen was carried out. The addition of filler in laser sintering changes the process behavior and properties of the component. With this investigation, the correlation among flame retardants, process-relevant characteristics, process behavior, and resulting part properties was derived for the first time. Finally, a mixture of 15–20 wt % of flame retardant leads to the best trade-off between flame retardancy and mechanical properties.