Published in

MDPI, Nutrients, 8(12), p. 2272, 2020

DOI: 10.3390/nu12082272

Links

Tools

Export citation

Search in Google Scholar

The Effect of High Polyphenol Extra Virgin Olive Oil on Blood Pressure and Arterial Stiffness in Healthy Australian Adults: A Randomized, Controlled, Cross-Over Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Extra virgin olive oil (EVOO) is suggested to be cardioprotective, partly due to its high phenolic content. We investigated the effect of extra virgin high polyphenol olive oil (HPOO) versus low polyphenol olive oil (LPOO) on blood pressure (BP) and arterial stiffness in healthy Australian adults. In a double-blind, randomized, controlled cross-over trial, 50 participants (age 38.5 ± 13.9 years, 66% female) were randomized to consume 60 mL/day of either HPOO (360 mg/kg polyphenols) or LPOO (86 mg/kg polyphenols) for three weeks. Following a two-week washout period, participants crossed over to consume the alternate oil. Anthropometric data, peripheral BP, central BP and arterial stiffness were measured at baseline and follow up. No significant differences were observed in the changes from baseline to follow up between the two treatments. However, a significant decrease in peripheral and central systolic BP (SBP) by 2.5 mmHg (95% CI: −4.7 to −0.3) and 2.7 mmHg (95% CI: −4.7 to −0.6), respectively, was observed after HPOO consumption. Neither olive oil changed diastolic BP (DBP) or measures of arterial stiffness. The reductions in SBP after HPOO consumption provide evidence for a potentially widely accessible dietary intervention to prevent cardiovascular disease in a multiethnic population. Longer intervention studies and/or higher doses of EVOO polyphenols are warranted to elucidate the potential effect on DBP and arterial stiffness.