Published in

JMIR Publications, Journal of Medical Internet Research, 1(23), p. e17564, 2021

DOI: 10.2196/17564

Links

Tools

Export citation

Search in Google Scholar

Applications and Recruitment Performance of Web-Based Respondent-Driven Sampling: Scoping Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Web-based respondent-driven sampling is a novel sampling method for the recruitment of participants for generating population estimates, studying social network characteristics, and delivering health interventions. However, the application, barriers and facilitators, and recruitment performance of web-based respondent-driven sampling have not yet been systematically investigated. Objective Our objectives were to provide an overview of published research using web-based respondent-driven sampling and to investigate factors related to the recruitment performance of web-based respondent-driven sampling. Methods We conducted a scoping review on web-based respondent-driven sampling studies published between 2000 and 2019. We used the process evaluation of complex interventions framework to gain insights into how web-based respondent-driven sampling was implemented, what mechanisms of impact drove recruitment, what the role of context was in the study, and how these components together influenced the recruitment performance of web-based respondent-driven sampling. Results We included 18 studies from 8 countries (high- and low-middle income countries), in which web-based respondent-driven sampling was used for making population estimates (n=12), studying social network characteristics (n=3), and delivering health-related interventions (n=3). Studies used web-based respondent-driven sampling to recruit between 19 and 3448 participants from a variety of target populations. Studies differed greatly in the number of seeds recruited, the proportion of successfully recruiting participants, the number of recruitment waves, the type of incentives offered to participants, and the duration of data collection. Studies that recruited relatively more seeds, through online platforms, and with less rigorous selection procedures reported relatively low percentages of successfully recruiting seeds. Studies that did not offer at least one guaranteed material incentive reported relatively fewer waves and lower percentages of successfully recruiting participants. The time of data collection was shortest in studies with university students. Conclusions Web-based respondent-driven sampling can be successfully applied to recruit individuals for making population estimates, studying social network characteristics, and delivering health interventions. In general, seed and peer recruitment may be enhanced by rigorously selecting and motivating seeds, offering at least one guaranteed material incentive, and facilitating adequate recruitment options regarding the target population’s online connectedness and communication behavior. Potential trade-offs should be taken into account when implementing web-based respondent-driven sampling, such as having less opportunities to implement rigorous seed selection procedures when recruiting many seeds, as well as issues around online rather than physical participation, such as the risk of cheaters participating repeatedly.